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In colloidal suspensions, at low volume fraction and temperature, dynamical arrest occurs via the growth of
elongated structures that aggregate to form a connected network at gelation. Here we show that, in the region
of parameter space where gelation occurs, the stable thermodynamical phase is a crystalline columnar one.
Near and above the gelation threshold, the disordered spanning network slowly evolves and finally orders to
form the crystalline structure. At higher volume fractions the stable phase is a lamellar one, which seems to
have a still longer ordering time.
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In colloidal suspensions solid �or liquid� mesoscopic par-
ticles are dispersed in another substance. These systems, like
blood, proteins in water, milk, black ink, or paints, are im-
portant in our everyday lives, in biology and industry �1,2�. It
is crucial, for example, to control the process of aggregation
in paint and paper industries �3�, or to favor the protein crys-
tallization in the production of pharmaceuticals and photonic
crystals �4,5�.

A practical and exciting feature of colloidal suspensions is
that the interaction energy between particles can be well con-
trolled �6–8�. In fact particles can be coated and stabilized
leading to a hard sphere behavior, and an attractive depletion
interaction can be brought out by adding some nonadsorbing
polymers. The range and strength of the potential are con-
trolled, respectively, by the size and concentration of the
polymer �8,9�. Recent experimental works highlighted the
presence of a net charge on colloidal particles �7,10� giving
rise to a long-range electrostatic repulsion in addition to the
depletion attraction.

The competition between attractive and repulsive interac-
tions produces a rich phenomenology and a complex behav-
ior as far as structural and dynamical properties are con-
cerned. For particular choices of the interaction parameters,
the aggregation of particles is favored but the liquid-gas
phase transition can be avoided and the cluster size can be
stabilized at an optimum value �11�. Experimentally, such a
cluster phase made of small equilibrium monodisperse clus-
ters is observed using confocal microscopy at low volume
fraction and low temperature �or high attraction strength�
�7,10,12�. On increasing the volume fraction, the system is
transformed from an ergodic cluster liquid into a nonergodic
gel �10,12�, where structural arrest occurs. Using molecular
dynamic simulations, we showed that such structural arrest is
crucially related to the formation of a long-living spanning
cluster, providing evidence for the percolation nature of the
colloidal gel transition at low volume fraction and low tem-
perature �13,14�. This scenario was confirmed by recent ex-
periments �10� and molecular dynamics �MD� simulations
�15�, where it was shown that on increasing the volume frac-

tion clusters coalesce into elongated structures, eventually
forming a disordered spanning network. A realistic frame-
work for the modelization of these systems is represented by
Derjaguin-Landau-Verwey-Overbrek �DLVO� interaction po-
tentials �16�, which combine short-range attractions and
long-range repulsions. A suitable choice of DLVO models
has in fact allowed reproduction, by means of molecular dy-
namics calculations, of many experimental observations, like
the cluster phase and gel-like slow dynamics �13–15�.

On the other hand, competing interactions have been stud-
ied in many other systems, ranging from spin systems to
aqueous surfactants or mixtures of block copolymers, and
often lead to pattern formation or to the creation of periodic
phases �17–23�.

In this paper, we simulate by molecular dynamics a sys-
tem composed of monodisperse particles, interacting with a
short-range attraction and a long-range repulsion in analogy
with DLVO models, for a large range of temperatures and
volume fractions. At low temperature, increasing the volume
fraction in the region of phase space where the system forms
a percolating network and waiting long enough, we observe
that the system spontaneously orders, to form a periodic
structure composed of parallel columns of particles. This
finding strongly suggests that the transition to the gel phase,
observed in experiments and in numerical simulations, hap-
pens in a “supercooled” region, namely, in a disordered
phase that is metastable with respect to crystallization. This
is supported also by the results on a mean field model �21�.
We then study the phase diagram of the system, by evaluat-
ing the free energy of the disordered and ordered phases, and
find the region where the columnar phase is stable. We also
locate the region of phase space where the stable phase is the
lamellar one. This phase does not form spontaneously within
the observation times, therefore indicating a much longer
nucleation time.

We have considered a system made of 1300�N�2300
particles. The particles interact through the effective interac-
tion potential �14�
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where a1=2.3, a2=6, a3=3.5, and �=2.5. The potential is
truncated and shifted to zero at a distance of 3.5�. The tem-
perature T is in units of � /kB, where kB is the Boltzmann
constant. The number of particles varies as we consider dif-
ferent volume fractions, defined using the equivalent system
of spheres of diameter � as �=4/3��3N /L3 in a simulation
box of size L. We have performed Newtonian molecular dy-
namics at constant NVT using the velocity Verlet algorithm
and the Nosé-Hoover thermostat �24� with time step �t
=0.01t0 �where t0=	m�2 /� and m is the mass of the par-
ticles�. For a given volume fraction �, the system is first
thermalized at very high temperature and then quenched to
the desired temperature. We let it evolve for times ranging
between 105t0 and 106t0 �107–108 MD steps�.

At low volume fraction ���0.2� and high temperature
�T	0.25�, the system remains in a disordered configuration
during the simulation time window. Decreasing the tempera-
ture, we observe the formation of long-living clusters with a
typical size of about ten particles. At temperature T=0.25
and for volume fractions � between 0.15 and 0.23, we find
that, shortly after the quench, these clusters aggregate into
locally rodlike structures with a length from a few to about
ten molecular diameters, which finally coalesce into a disor-
dered network. At longer times, between 5
104t0 and 106t0,
these elongated rodlike structures start to spontaneously or-
der in a two-dimensional hexagonal packing of parallel co-
lumnar structures, with a fast drop in the energy, as illus-
trated in Fig. 1�a�. We also observe that locally particles
rearrange in a spiral structure that optimizes the competing
interactions, very similar to the Bernal spiral �25�, where
each particle has six neighbors. Such a local structure is also
indicated by experimental observations �10� and found in
numerical simulations with similar interactions �15�.

In order to infer the phase diagram of the system at low
volume fraction, we first studied the state of the system at
very low temperature. In that limit, entropy can be neglected

and the equilibrium state of the system should be the crys-
talline structure with the lowest potential energy. Of course,
an exact determination of such a structure, which may de-
pend on the volume fraction, is far from trivial. We have
instead selected a few possible structures and made a com-
parative analysis by calculating numerically their potential
energy as a function of the volume fraction. The structures
considered are the following �in each case, the lattice spacing
between elements is chosen to provide the desired volume
fraction�.

�1� The cluster crystal: three-dimensional hexagonal close
packing of nearly spherical clusters, each cluster being com-
posed of 13 particles �a central one in contact with 12 exter-
nal ones�. In this case particles have 5.54 neighbors on the
average. These clusters were chosen because of their similar-
ity to the long-living clusters observed at low temperature
and volume fraction, composed generally by one particle sur-
rounded by eight to eleven neighbors.

�2� The columnar phase: Two-dimensional hexagonal
packing of parallel Bernal spirals. In this case, each particle
has six neighbors.

�3� The lamellar phase: Parallel planes, each plane being
formed by one or more layers of hexagonally packed par-
ticles �Fig. 1�b��. In this case, the average number of neigh-
bors per particle is between six �one layer� and 12 �when the
number of layers increases the structure becomes a hexago-
nal close-packed lattice of particles�.

After having placed the particles to form these structures
with the distance between nearest neighbors corresponding
to the minimum of the pair potential, we have calculated the
nearest minimum of the potential energy landscape, by mini-
mizing the total potential energy U�r1 , . . . ,rN� as a function
of the particle positions, using a conjugate-gradient algo-
rithm �27�. The potential energy per particle U0 /N of the
minimum is shown in Fig. 2.

The cluster crystal never provides the lowest energy be-
cause of the limited number of neighbors per particle. For

FIG. 1. �Color online� �a� Snapshot of one of the systems after
the ordering �simulation time t=105t0�, taken from a direction par-
allel to the columns, showing the two-dimensional arrangement of
the axes. Since columns are not perfectly straight, their diameters
appear to be larger than in reality. �b� Lamellar phase at �=0.26
and T=0.2.

FIG. 2. �Color online� Minimum of the total potential energy per
particle, U0 /N, for several structures as a function of the volume
fraction.
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volume fractions ��0.235, the columnar phase of Bernal
spirals is energetically preferred. Indeed, in this case the
combination of a relatively high number of first neighbors
and a low number of second and third neighbors minimizes
the repulsive part of the interaction potential. On increasing
the volume fraction, the columns get closer and the repulsion
between them becomes relevant. At �	0.235, the potential
energy of the columnar phase becomes higher than that of
the two-layer lamellae. In fact, since lamellae are more dis-
tant than columns for a given volume fraction, the repulsion
between lamellae is weaker. It is interesting to note that one-
layer lamellae are never energetically preferred and that their
minimum potential energy becomes close to that of the col-
umns at high volume fraction. At �	0.42, the three-layer
lamellae exhibit the lowest potential energy, and so on. Simi-
lar results were recently found in a two-dimensional DLVO
system �23�.

In order to test the stability of these structures as the tem-
perature increases, we performed the following experiment.
Given a volume fraction and a temperature, we let evolve a
crystalline configuration of columns or two-layer lamellae by
means of molecular dynamics at constant temperature for
106t0. The obtained phase diagram is shown in Fig. 3. Circles
represent state points where both columns and lamellae
break down before the end of the simulation �disordered
phase�. The triangles are the points where lamellae break
down, but columns are stable �columnar phase�. The squares
are the points where lamellae are stable and columns break
down �lamellar phase�. Finally, the points where triangles
and squares overlap correspond to the states where both col-
umns and lamellae remain stable until t=106t0. We note that
near the boundaries with the disordered phase, columns or
lamellae become fuzzy, but the modulation of the density is
still clearly visible.

To check the results found by molecular dynamics simu-

lations and to better estimate the phase boundaries, we have
computed the free energy of the three phases that seem to be
relevant for ��0.4: the disordered, columnar, and two-layer
lamellar phases. The free energy of the disordered phase is
computed by thermodynamic integration �26� along the fol-
lowing path: from the perfect gas limit �V→ � � down to the
desired volume V along the isotherm T0=1. The free energy
at �V ,T0� is therefore given by

F0

NT0
= ln�N

V
� +

3

2
ln�2��2

mT0
� − 1 + 


V

� �P�V��
NT0

dV� �2�

where �P�V�= P�V�−
NT0

V is the excess pressure with respect
to the perfect gas. Since values of � and the mass m merely
shift the free energy by a constant, we set �=1 and m=1. We
have then integrated along the isochore V, from T0 to the
desired temperature, and obtained

F

NT
=

F0

NT0
+

3

2
ln�T0

T
� + 


T

T0 U�T��
NT�2 dT�. �3�

Starting from T=0, we have calculated the free energy of the
two crystalline phases by integrating along an isochore. At
very low temperatures the potential energy landscape can be
approximated by a parabolic function

U = U0 +
1

2�
i=1

3N

�ixi
2, �4�

where �i are the eigenvalues of the Hessian matrix at the
minimum of the potential. The free energy is then calculated
as

FIG. 4. �Color online� Free energy per particle F�T� /N of the
disordered phase �circles� and of the columnar phase �triangles� as a
function of temperature at �=0.1308. Inset: potential energy per
particle U�T� /N.

FIG. 3. �Color online� T-� phase diagram of the system. Circles
represent the disordered phase, triangles the columnar phase, and
squares the lamellar phase. Stars represent points where the calcu-
lated free energies of two phases cross. Solid lines are a guide for
the eyes.
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where �U�T�=U�T�−U0− 3NT
2 .

In Fig. 4 the free energies of the disordered phase and of
the columnar phase at �=0.1308 are shown as a function of
the temperature. The curves cross at the temperature �Tc

=0.17� corresponding to the first-order transition from the
columnar phase to the disordered phase. This, together with
the other transition points, is marked in Fig. 3 by a star1.

These results suggest the following scenario for colloidal
gelation at low volume fraction and low temperature. Just
recall that in real colloidal systems the control parameter
corresponding to low temperature is a high effective attrac-
tion strength. The competition between attractive and repul-

sive interaction induces a typical modulation length clearly
detected at very low volume fraction in the cluster phase. As
the volume fraction is increased, clusters are prone to aggre-
gate in spite of the long-range repulsion. This results in the
growing of elongated structures which keep track of the
modulation length. Eventually, a modulated phase forms,
with a columnar geometry or a lamellar one at higher volume
fraction. Of course the precursors of the modulated structures
will have defects such as local inhomogeneities and branch-
ing points. Furthermore, the slow dynamics due to the vis-
cosity of the solvent and to the imperfect shape of the par-
ticles may also hinder the ordered phase, producing long-
living metastable disordered states. Hence, when the volume
fraction is high enough, an interconnected spanning structure
is formed and a gel-like behavior is observed, as it is fre-
quently the case in the experiments.
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1In principle, the first-order transition line T-� can be calculated
also with the Clausius-Clapeyron equation dT /dV=−T�P /�U,
where �P and �U are the pressure and energy differences between
the two phases. However, in this way the result depends entirely on
quantities evaluated at the transition, where the fluctuations and
hence the errors are large.
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